Extension Complexity of Polytopes with Few Vertices or Facets

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extension complexity of polytopes with few vertices or facets

We study the extension complexity of polytopes with few vertices or facets. On the one hand, we provide a complete classification of d-polytopes with at most d + 4 vertices according to their extension complexity: Out of the super-exponentially many d-polytopes with d+4 vertices, all have extension complexity d+ 4 except for some families of size θ(d). On the other hand, we show that generic re...

متن کامل

On approximation by projections of polytopes with few facets

We provide an affirmative answer to a problem posed by Barvinok and Veomett in [4], showing that in general an n-dimensional convex body cannot be approximated by a projection of a section of a simplex of sub-exponential dimension. Moreover, we prove that for all 1 ≤ n ≤ N there exists an n-dimensional convex body B such that for every n-dimensional convex body K obtained as a projection of a s...

متن کامل

LP-related Properties of Polytopes with Few Facets

Linear Programming is the problem of maximizing a linear function in d variables subject to n linear constraints. Its relevance arises from the huge number of optimization problems that can be described as linear programs. An algorithm that solves any linear program has been known almost as long as linear programming: it is the so-called Simplex Method. This method performs extremely well in pr...

متن کامل

Edge-Graph Diameter Bounds for Convex Polytopes with Few Facets

We show that the edge graph of a 6-dimensional polytope with 12 facets has diameter at most 6, thus verifying the d-step conjecture of Klee and Walkup in the case of d = 6. This implies that for all pairs (d, n) with n−d ≤ 6 the diameter of the edge graph of a d-polytope with n facets is bounded by 6, which proves the Hirsch conjecture for all n − d ≤ 6. We show this result by showing this boun...

متن کامل

Directed Random Walks on Polytopes with Few Facets

Our research is motivated by the simplex algorithm for linear programming. We consider the variation where the algorithm chooses at each step the next position uniformly at random from all improving neighbouring positions; this rule is commonly called Random-Edge. Its expected runtime on general linear programs can be mildly exponential; cf. Friedmann et al. [2011]. Better bounds can be hoped f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2016

ISSN: 0895-4801,1095-7146

DOI: 10.1137/16m1063721